3 research outputs found

    Sweet Streams are Made of This: The System Engineer's View on Energy Efficiency in Video Communications

    Full text link
    In recent years, the global use of online video services has increased rapidly. Today, a manifold of applications, such as video streaming, video conferencing, live broadcasting, and social networks, make use of this technology. A recent study found that the development and the success of these services had as a consequence that, nowadays, more than 1% of the global greenhouse-gas emissions are related to online video, with growth rates close to 10% per year. This article reviews the latest findings concerning energy consumption of online video from the system engineer's perspective, where the system engineer is the designer and operator of a typical online video service. We discuss all relevant energy sinks, highlight dependencies with quality-of-service variables as well as video properties, review energy consumption models for different devices from the literature, and aggregate these existing models into a global model for the overall energy consumption of a generic online video service. Analyzing this model and its implications, we find that end-user devices and video encoding have the largest potential for energy savings. Finally, we provide an overview of recent advances in energy efficiency improvement for video streaming and propose future research directions for energy-efficient video streaming services.Comment: 16 pages, 5 figures, accepted for IEEE Circuits and Systems Magazin

    Extended Signaling Methods for Reduced Video Decoder Power Consumption Using Green Metadata

    Full text link
    In this paper, we discuss one aspect of the latest MPEG standard edition on energy-efficient media consumption, also known as Green Metadata (ISO/IEC 232001-11), which is the interactive signaling for remote decoder-power reduction for peer-to-peer video conferencing. In this scenario, the receiver of a video, e.g., a battery-driven portable device, can send a dedicated request to the sender which asks for a video bitstream representation that is less complex to decode and process. Consequently, the receiver saves energy and extends operating times. We provide an overview on latest studies from the literature dealing with energy-saving aspects, which motivate the extension of the legacy Green Metadata standard. Furthermore, we explain the newly introduced syntax elements and verify their effectiveness by performing dedicated experiments. We show that the integration of these syntax elements can lead to dynamic energy savings of up to 90% for software video decoding and 80% for hardware video decoding, respectively.Comment: 5 pages, 2 figure
    corecore